
End-to-End Optimization of Scene Layout

Andrew Luo1 Zhoutong Zhang2 Jiajun Wu3 Joshua B. Tenenbaum2

1Carnegie Mellon University 2Massachusetts Institute of Technology 3Stanford University

Abstract

We propose an end-to-end variational generative model

for scene layout synthesis conditioned on scene graphs. Un-

like unconditional scene layout generation, we use scene

graphs as an abstract but general representation to guide

the synthesis of diverse scene layouts that satisfy relation-

ships included in the scene graph. This gives rise to more

flexible control over the synthesis process, allowing vari-

ous forms of inputs such as scene layouts extracted from

sentences or inferred from a single color image. Using our

conditional layout synthesizer, we can generate various lay-

outs that share the same structure of the input example. In

addition to this conditional generation design, we also inte-

grate a differentiable rendering module that enables layout

refinement using only 2D projections of the scene. Given

a depth and a semantics map, the differentiable render-

ing module enables optimizing over the synthesized layout

to fit the given input in an analysis-by-synthesis fashion.

Experiments suggest that our model achieves higher accu-

racy and diversity in conditional scene synthesis and allows

exemplar-based scene generation from various input forms.

1. Introduction

Interior scene layout generation is primarily concerned

with the positioning of objects that are commonly encoun-

tered indoors, such as furniture and appliances. It is of great

interest due to its important role in simulated navigation,

home automation, and interior design. The predominant ap-

proach is to perform unconditioned layout generation using

implicit likelihood models [34]. These unconditional mod-

els can produce diverse possible layouts, but often lack the

fine-grained control that allows a user to specify additional

requirements or modify the scene. In contrast to the uncon-

ditional models, conditional layout generation uses various

types of inputs, such as activity traces, partial layouts, or

text-based descriptions, enabling more flexible synthesis.

In this work, we use the 3D scene graph representation as

a high-level abstraction, with the graph not only encoding

object attributes and identities, but also 3D spatial relation-

ships. Not only does this design enable more control over
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Figure 1: Conditional scene synthesis. (a) The input is a

scene graph describing object relationships. (b)–(g) Diverse

layouts synthesized conforming to the input scene graph.

the generated content, as users can directly manipulate the

input scene graph, it also serves as a general intermediate

representation between various modalities of scene descrip-

tions, such as text-based descriptions and exemplar images.

Many previous methods have used scene graphs as an in-

termediate representation for downstream vision tasks such

as image synthesis, where they mostly formulate the prob-

lem in a deterministic manner. In contrast, our model re-

spects the stochastic nature of the actual scene layout con-

ditioned on the abstract description of a scene graph. The

model we introduce, named 3D Scene Layout Network (3D-

SLN), is a general framework for scene layout synthesis

from scene graphs. 3D-SLN combines a variational au-

toencoder with a graph convolutional network to generate

diverse and plausible layouts that are described by the rela-

tionships given in the 3D scene graph, as shown in Figure 1.

We further demonstrate how a differentiable renderer can

be used to refine the generated layout using a single 2.5D

sketch (depth/surface normal) and the semantic map of a

3D scene. In addition, our framework can be applied to per-

form exemplar-based layout generation, where we synthe-

size different scene layouts that share the same scene graph

extracted from text or inferred from a reference image.

In summary, our contributions are threefold. First, we

introduce 3D-SLN, a conditional variational autoencoder–

based network that generates diverse and realistic scene lay-

outs conditioned on a scene graph. Second, we demonstrate

our model can be fine-tuned to generate 3D scene layouts
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that match the given depth and semantic information. Fi-

nally, we showed that our model can be useful for several

applications, such as exemplar-based layout synthesis and

scene graph–based image synthesis.

2. Related Work

Our method is related to the multiple areas in computer

vision and graphics, including scene graph representations,

scene synthesis, and differentiable rendering.

Scene graphs. Scenes can be represented as scene

graphs—directed graphs whose nodes are objects and edges

are relationships between objects. Scene graphs have found

wide applications such as image retrieval [12] and image

captioning [1]. There have also been attempts to generate

scene graphs from text [25], images [32, 21, 17], and par-

tially completed graphs [30]. In this paper, we use scene

graphs to guide our synthesis of 3D indoor scene layout.

Scene synthesis. In computer graphics, there has been ex-

tensive research on indoor scene synthesis. Much of this

work is associated with producing plausible layouts con-

strained by a statistical prior learned from data. Typical

techniques used include probabilistic models [4, 5, 34],

stochastic grammar [23], and recently, convolutional net-

works [31, 24].

Many of these approaches build upon the recent advance-

ment of large-scale scene repositories [28, 20, 36] and in-

door scene rendering methods [35, 16, 10]. These meth-

ods typically focus on modeling the possible distribution

of objects given a particular room type (e.g., bedrooms).

Some recent papers [2] have studied 3D scene layout gener-

ation directly from text. Some concurrent work also uses

relational graphs for modelling scenes, however our ap-

proach is capable of single-pass scene synthesis in a fully

differentiable manner, where as [30] tries to generate the

scene graph in an autoregressive fashion, and has an non-

differentiable sampling step.

Differentiable rendering. Traditional graphics engines

do not produce usable gradients for optimization purposes.

A variety of renderers that allow for end-to-end differen-

tiation have been proposed [19, 15, 13, 18]. These dif-

ferentiable renderers have been used for texture optimiza-

tion [13], face inference [29], single image mesh recon-

struction [6], and scene parsing [9]. Additionally non-

differentiable rendering has been used with approximated

gradients [14] for instance level 3D construction. We utilize

the neural mesh renderer [13], which allows us to manipu-

late the layout and rotation of individual objects given depth

and semantic maps as reference.

3. Methods

We propose 3D Scene Layout Networks (3D-SLN), a

conditional variational autoencoder network tailored to op-

erate on scene graphs. We first use a graph convolution net-

work to model the posterior distribution of the layout condi-

tioned on the given scene graph. Then, we generate diverse

scene layouts, which includes each object’s size, location

and rotation, by sampling from the prior distribution.

3.1. Scene Layout Generator

While previous methods generate 2D bounding boxes

from a scene graph [11] or text descriptions [7], our model

generates 3D scene layouts, consisting of the 3D bound-

ing box and rotation along the vertical axis for each object.

In addition, we augment traditional 2D scene graphs to 3D

scene graphs, encoding object relationships in 3D space.

Specifically, we define the X and Y axis to span the

plane consisting of the room’s floor, and an up-direction

Z for objects above the floor. Under such definition, the

relationship ‘left of’ constraints the X and Y coordinates

between pairs of objects, while the relationship ‘on’ con-

straints the Z coordinate between them. Each node in the

scene graph will not only define what type of object it is, it

may optionally define object’s attributes regarding the ob-

ject height (tall, short) but also volume (large, small). The

scene graph y is represented by a set of relationship triplets,

where each triplet is in the form of (oi, p, oj). Here p de-

notes the spatial relationship and oi denotes the i-th object’s

type and attributes.

In order to operate on the input graph and to generate

multiple scenes from the same input, we propose a novel

framework, named 3D Scene Layout Network (3D-SLN),

combining a graph convolution network (GCN) [11] with a

conditional variational autoencoder (cVAE) [26]. The archi-

tecture is shown in Figure 2. During training, the encoder is

tasked to generate the posterior distribution of a given scene

layout conditioned on the corresponding scene graph. The

encoder therefore takes a scene graph and an exemplar lay-

out as input, and outputs the posterior distribution for each

object, represented by the mean and log-variance of a diag-

onal Gaussian distribution. A latent vector is then sampled

from the Gaussian for each object. The decoder then takes

the sampled latent vectors and the scene graph as input and

generates a scene layout, represented by the 3D bounding

box and its rotation for each object.

We define x to be the input scene graph, y to be a ex-

emplar layout, ŷ to be the generated layout, and θe, θd to

be the weights of the encoder Pθe and decoder Qθd of 3D-

SLN, respectively. Each element in yi in layout y is defined

by a 7-tuple, representing the bounding box and the rotation

of each object i:

yi = (minXi
,minYi

,minZi
,maxXi

,maxYi
,maxZi

, ωi), (1)

where minXi
,minYi

,minZi
,maxXi

,maxYi
,maxZi

de-

notes the 3D bounding box coordinates, and ωi denotes the

rotation around the Z axis.
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Figure 2: Network architecture of the scene layout generator. (a) At test time, a latent code is sampled from a learned

distribution and is sent to a decoder with the scene graph to generate scene layout. (b) During training, an encoder converts

the ground truth scene layout and the scene graph into a distribution, from which the latent code is sampled and decoded.

To train the graph-based conditional variational autoen-

coder described above, we optimize

L(x, y; θ) = λDKL(Pθe(z|x, y)|p(z|x))+Llayout(Qθd
(x, z), y),

(2)

where λ is the weight of the Kullback-Liebler divergence,

p(z|x) is the prior distribution of the latent vectors, which

is modeled as diagonal Gaussian distribution, and Llayout is

the loss function defined over layouts. Llayout consists two

parts: Lposition and Lrotation. Lposition is defined as the L1 loss

over each object’s bounding box parameters. For the rota-

tion, we first discretize the range of the rotation angles to

24 bins, and define Lrotation as the negative log-likelihood

loss between the discretized angles for all the objects. We

apply learned embedding layers to process object type, rota-

tion, attribute, and relations; and a linear layer to process the

bounding box. The rotation and box embeddings are used

for the encoder only. The object type, bounding box, rota-

tion, attribute, and relational embeddings have dimensions

[48, 48, 16, 16, 128]. Embeddings are computed separately

for the encoder and decoder. The intermediate latent repre-

sentation is a 64 dimensional vector for each object. Both

the encoder and decoder contain five graph convolution lay-

ers with average pooling and batch normalization.

At test time, we use the decoder to sample scene lay-

outs from scene graphs. We first sample latent vectors from

the prior distribution, modeled as a Gaussian distribution.

Given the sampled latent vectors and the 3D scene graph,

the decoder then generates multiple possible layouts.

3.2. GradientBased Layout Refinement

Here we consider the case where we would like to gen-

erate a layout that fits a target layout, represented as an

depth image D with corresponding semantics S. Using our

scene graph and an inferred layout, we first retrieve object

meshes from the SUNCG dataset to construct a complete

scene model. Specifically, for each object i in the gener-

ated layout, we retrieve its 3D model Mi from the SUNCG

dataset by finding the models with the most similar bound-

ing box parameters within its class.

After instantiating a full 3D scene model, we then utilize

a differentiable renderer [13] R to render the corresponding

semantic image S̃ and the depth image D̃ from the scene.

The rendered images are then used to compare with the tar-

get semantics and depth image. This provides the gradients

to update both the sampled latent vectors and the weights of

the decoder, making the generated 3D layout to be consis-

tent with the input semantics and depth.

Specifically, we note the entire generate process as

S̃ = RS(ŷ1,M1, ŷ2,M2, ..., ŷN ,MN ), (3)

D̃ = RD(ŷ1,M1, ŷ2,M2, ..., ŷN ,MN ), (4)

ŷ = Qθd(x, z), (5)

where RS denotes the rendered semantic map, RD denotes

the rendered depth map, ŷ denotes the generated layout, and

N denotes the number of objects in the scene graph x.

To optimize the decoder and the latent vectors, we aim

to calculate the gradient of D̃ and S̃ with respect to z and

θd. Note that since the output of ωi in yi is discretized into

24 bins, i.e. ωi = bink, where k = argmaxk({ωik|k ∈
[1, 2, ...24]}), the entire rendering process is not differen-

tiable due to the argmax operator. To overcome this, we use

a softmax-based approximation to compute the angle for the

i-th object, defined as (assuming a k-way prediction)

xk =

k∑

n=1

1, ωik =
eωik

∑
k e

ωik

,

ωi =
∑

(ωik × xk)− 1.0.
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Figure 3: We can fine-tune object positions, sizes, and rota-

tions by computing the difference in estimated and ground-

truth 2.5D sketches and back-propagating the gradients.

By doing so, we can take gradients of the loss function

between the rendered images D̃, S̃ and the target images

D,S. A simple loss function can be defined as Ltotal =
L2(D, D̃) + Lcross-entropy(S, S̃). This however, leads to

highly unstable gradients in practice. To stabilize the lay-

out refinement process, we calculate the loss between the

depth images in a per-class manner. More specifically, for

each class c, we calculate its class-conditioned depth map

DC as

Dc[S == c] = D ⊗ S[S == c], (6)

Dc[S 6= c] = mean(Dc[S == c]). (7)

That is, we keep the depth values that lies within a particular

semantic class c, and fill the rest of the values with the mean

depth of this class. Therefore, we rewrite the depth loss as

Ldepth =
∑

c L2(D̃c, Dc).
This can be understood as a class-wise isolation of the

depth gradient, and can prevent spurious optima during the

layout refinement process. We also impose a soft constraint

on the change in object sizes with an additional L1 penalty

on the size of each object during optimization at a given

time step s̃t compared to the original size s̃0. To facil-

itate the optimization process when target and proposed

layouts may not have an exact match in shape, we apply

multi-scale average pooling on both the candidate and tar-

get. The total refinement loss with respect to a target depth

and semantic is Ltotal = αLsize + βLdepth + γLsem, where

α, β, and γ are hyper-parameters, and Lsize = |s̃t, s̃0|1,

Ldepth =
∑

c |D̃c, Dc|
2

2
, and Lsem = Lcross-entropy(S̃, S).

This allows us to obtain meaningful gradients from a ex-

emplar 2D projection of a scene to optimize ŷ by calculating

a gradient with respect to the sampled latent vector z and

the decoder. The framework for our gradient based layout

refinement is shown in Figure 3.

4. Experiments

In this section, we compare our approach with state-of-

the-art scene layout synthesis algorithms to demonstrate the

quality and diversity of our synthesized scenes. Additional

ablation studies show that each component in our model

contributes to its performance. Finally, we demonstrate our

algorithm also enables exemplar based layout synthesis and

refinement.

4.1. Setup

For layout generation, we learn from bedroom layouts

in SUNCG [28]. The training dataset consists of 53,860

bedroom scenes with 13.15 objects in each scene on aver-

age. During training, we use synthetic scene graphs sam-

pled from the ground truth scene layout, which can avoid

human labeling and also serve as data augmentation. At

test time, we can either use human-created scene graphs or

sample scene graphs from the validation set as model input.

The cVAE 3D graph network is trained on a total of 600k
batches, which takes around 64 hours with a single Titan

Xp. For each batch we sample 128 scene graphs. A learn-

ing rate of 10−4 is used with the Adam optimizer. We use

three losses with the following weights: λpos = 1, λrot =
1, and λKL = 0.1.

4.2. Scene Layout Synthesis

We first evaluate our 3D-SLN on scene layout synthesis

from a scene graph. We sample 10 layouts per scene, and

calculate the average standard deviation for object size, po-

sition, and rotation. Layout synthesis alone during testing

is highly efficient, taking about 70ms on a GPU for a batch

of 128 graphs.

Baselines. We compare our model with the state-of-the-

art scene layout synthesis algorithm, DeepSynth [31]. Fol-

lowing Qi et al. [23], we also include two additional base-

lines: Random, where every object is distributed randomly

in a room; and Perturbed, where we perturb object positions

against their ground truth positions with a variance of 0.1 on

their spatial location (all locations are normalized to [0, 1])
and with a standard deviation of 3 bins on their rotation (ap-

proximately 0.785 radians).

Metrics. We analyze both the accuracy and diversity of

the results through three metrics:

• Scene graph accuracy measures the percentage of

scene graph relationships a given layout respects, and

is a metric that measures input-output alignment.

• L1 loss of the proposed and ground truth bounding

boxes. It should be noted that since the goal is the gen-

erate multiple plausible layouts, L1 is not necessarily a

meaningful metric and is provided for reference only.

• The standard deviation of the size, position, and ro-

tation of objects in predicted scene layouts. Because

DeepSynth produces layouts in an autoregressive fash-

ion, a particular object of interest (e.g., a bed) might

appear at various steps across multiple trials. Due to

the lack of correspondence, we can only compute the

standard deviation for all objects within each semantic



Model Scene Graph Acc. (%) L1 box loss STD (size) STD (position) STD (rotation)

Random Layout 57.1 0.317 0.000 0.244 6.48

Perturbed Layout 82.6 0.080 0.000 0.100 3.00

DeepSynth N/A N/A N/A 0.129 2.27

GCN 86.3 0.111 0.000 0.000 0.00

GCN+noise 86.9 0.109 0.001 0.002 0.18

3D-SLN (Ours) 94.3 0.148 0.026 0.078 4.77

Table 1: Quantitative results on scene layout generation. We use scene graph accuracy and L1 bounding box loss to evaluate

the accuracy of generated scene layouts. Standard deviation of boxes and angles are used to measure the diversity of scene

layouts. In the above evaluation, bounding boxes are normalized in the range [0, 1], while angles are represented as integers

ranging from 0 to 23. DeepSynth [31] is used as a baseline.

category, and average the standard deviations across all

categories. For our model and the random/perturbed

layout models, we calculate standard deviations for

each object of interest and compute their mean.

Results. Table 1 shows that our model has the highest

scene graph accuracy and diversity. This indicates that our

model has successfully learned to position objects accord-

ing to a distribution rather than approximating a fixed loca-

tion. While DeepSynth has a higher standard deviation in

object positions, it has a lower standard deviation in rota-

tions. It also does not allow fine-grained control of the syn-

thesis process. Although ‘Perturbed Layout’ has the lowest

L1 loss, it has a significantly lower scene graph accuracy.

4.3. Ablation Study

We perform ablation studies on our scene layout gener-

ation network. By utilizing a graph convolution network

combined with a VAE, it is able to generate multiple plau-

sible layouts from a given scene graph.

Baselines. Following Johnson et al. [11], we run an ab-

lated version of our network (denoted as GCN) that con-

sists of a single graph convolution network followed by an

MLP to predict the layout conditioned on a scene graph.

This baseline is deterministic. We also propose a different

method, GCN+noise, which samples noises from N (0, 1)
to perturb the layout of the GCN baseline.

Results. Table 1 shows that our full model (3D-SLN)

achieves the highest scene graph accuracy, indicating that

most of the synthesized scene layouts indeed follow the in-

put scene graph. Our full model also achieves the highest

diversity, as measured in the standard deviation in the size,

position, and rotation of objects in the synthesized scene.

4.4. EndtoEnd Layout Refinement

We now demonstrate that our model can be guided by

2.5D sketches and semantic maps when synthesizing 3D

Metrics Pre-Finetune Post-Finetune Improve (%)

3D IoU 0.2353 0.3035 28.9

Depth MSE 0.0525 0.0480 8.64

Semantic CE 2.9471 2.8504 3.28

Table 2: Quantitative results on finetuning with 2.5D

sketches of a target layout. We measure the Intersection-

over-Union (IoU) of the 3D bounding boxes, class-specific

mean squared error (MSE) of the depth maps, as well as the

cross-entropy loss (CE) on semantic maps.

scene layout from a scene graph. We perform optimiza-

tion over 150 randomly selected scene graphs. Here, for

sampling different scene layouts from our stochastic model,

we use the latent sampled from the ground truth bounding

boxes of a given scene. To prevent cases when wall or ob-

ject occlusion negatively impact optimization performance,

we take six attempts at a given scene graph, and select the

best. The analysis-by-synthesis process requires a forward

(rendering) pass to produce depth and semantic maps, then

a backwards pass to produce gradients. We optimize for 60

steps, taking three minutes for each scene on average.

Metrics. We use three metrics for this problem: The first

is done in 3D, and captures the Intersection-over-Union (3D

IoU) of objects and their target after all transformations (ro-

tations and translations) are applied. The latter two are per-

formed in the 2D projection: we calculate a mean-squared

error (MSE) on the predicted and ground-truth depth maps;

we also calculate the cross-entropy (CE) loss of our current

proposed layout against the target layout.

Results. The results can be seen in Table 2. We also per-

form qualitative evaluations on layouts in Figure 4. As ex-

pected, the initial proposed layout shares the same scene

graph with the target layout, the action location of the ob-

jects can be different from the target, because our layout

synthesis is conditioned on scene graph only. After opti-

mization, we are able to fit the target layout reasonably well.

Multiple views of synthesized scenes are shown in Figure 5.
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Figure 4: Each row shows a test case for exemplar-based layout fine-tuning. The left three columns represent the 2D semantic

map of the initially proposed layout, the ground truth target, and the semantic map after layout optimization. The right three

columns represent the 2.5D depth map similarly. (a) After fine-tuning, the bed has moved to the center as in the target, and

the two night stands become more prominent; (b) The lamp (in light blue) has moved downwards; (c) The desk has moved

to the right after optimization and the bed has become closer; (d) The bed has moved closer to the sofa.
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Figure 5: Multiple views of synthesized scenes.

Analyzing the latent space. We examine the latent repre-

sentation of the scene layouts. In Figure 6, we demonstrate

that the layout of objects can smoothly change as we inter-

polate two random latent vectors. In Figure 8, we demon-

strate the effect of manipulating dimension 11 and 62 of the

latent vector for the bed object.

User study. We randomly sample 300 scene graphs and,

for each, generate five layouts using the GCN+noise model
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Figure 6: Top down visualization of a room as we linearly

interpolate between the latent vector representing layouts

for the same scene graph.

and five using our 3D-SLN model, respectively. We then

present the layouts in a top down view along with the scene

graph in sentences to subjects on Amazon Mechanical Turk,

asking them which set of layouts is more diverse. Each sub-

ject is shown twelve scene graphs. 78.9% of responses sug-

gested layouts generated by 3D-SLN be more diverse.
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Figure 7: Qualitative results for conditional image synthesis. Top: input scene graph; Middle: images generated by our

model; Bottom: images generated by Johnson et al. [11], which does not incorporate 3D information. Our model generates

better results via its understanding of 3D scene layout.
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Figure 8: Top down visualization of a room as we manip-

ulate individual dimensions of latent vector for bed object

(orange). For dimension 11, note bed elongation.

F
ai

lu
re

 c
as

es

S
u
cc

es
sf

u
l 

ca
se

s

Figure 9: Top down visualization of failure cases (left of

dotted line) compared to a good layout. All layouts are syn-

thesized from the same scene graph.

Failure cases. As shown in Figure 9, scene synthesis per-

formance decreases when a graph contains too many objects

that might overlap. As part of future work, this could be im-

proved during training by adding an adversarial loss, or dur-

ing inference by rejecting implausible layouts with the use

of physical simulation as in [3], or by performing simple

collision detection on generated layouts.

5. Applications

Our scene graph–based layout synthesis algorithm en-

ables many downstream applications. In this section,

we show results on scene graph–based image synthesis,

sentence-based scene layout synthesis, and exemplar-based

scene layout synthesis.

5.1. Scene Graph–Based Image Synthesis

As our model produces not only 3D scene layouts, but

also 2.5D sketches and semantic maps, we train an image

translation network, SPADE [22], that takes in depth and se-

mantic maps and synthesizes an RGB image. Training data

for the SPADE model, including RGB, depth, and seman-

tic maps, are all taken from the Structured3D dataset [36],

and are randomly cropped to 256×256 after we resize the

longest edge to 480 pixels. The training dataset consists of

82,838 images total. We compare our model with the state-

of-the-art, scene graph-to-image model [11].

Results are shown in Figure 7. The images generated by

our model are sharp and photo-realistic, with complex light-

ing. Meanwhile, the baseline [11] can only generate blurry

images, where sometimes the objects are hardly recogniz-

able and fail to preserve the 3D structure.

5.2. SentenceBased Scene Layout Synthesis

Conventional text-to-image synthesis methods use a text

encoder to convert an input sentence into a latent code,

which is then fed into a conditional GAN to generate an im-

age. However existing methods only work when the input

sentence has only one or a few objects. The task becomes

more challenging when input text consists of multiple ob-

jects and contains complex relationships. We compare our

approach against AttnGAN [33], the state-of-the-art image

synthesis algorithm that takes in sentences as input.

Qualitative results are shown in Figure 10. As AttnGAN

suffers from deterioration when there are too many objects,



a short fabric bed is in front of 

a large fabric desk, the desk is 

behind a large wooden cabinet, 

the cabinet is left touching the 

bed

the second tall fabric bed is on 

the left of a small television, a 

large wooden desk is behind the 

first tall fabric bed, a tall 

wooden cabinet is on the right 

of the second bed, the cabinet is 

on the right of the first bed, the 

cabinet is in front of the desk

a tall television is on a short 

wooden cabinet, a short fabric 

bed is in front of a small 

wooden desk, the bed is on the 

right of the television, the 

television is in front of a tall 

wooden chair, the chair is in 

front of the desk

a tall wooden bed is behind 

touching a short fabric chair, 

the chair is front touching the 

bed

Figure 10: Comparison with AttnGAN [33]. The images on the top row are generated by our model, while the images on the

bottom row are generated by AttnGAN [33]. In comparison, our model generates higher-quality scenes.

we have constricted each individual description to have at

most five sentences. Our 3D-SLN generates more realistic

images compared with AttnGAN.

5.3. ExemplarBased Scene Layout Synthesis

Our model can also be used to reconstruct and create new

layouts based on an example image. We use Cooperative

Scene Parsing [8] to predict object classes and 3D bounding

boxes from an image. For our purposes, we test on bedroom

images sampled from the SUN RGB-D dataset [27]. After

extracting 3D bounding boxes for each object, we infer a

3D scene graph with the same object classes and relation-

ships that our model is trained on. This scene graph is sent

to our model to generate layouts that observe the relational

constraints present in the scene graph.

We present some qualitative results in Figure 11. Our

model is not only capable of recovering the original layout

in the example image, but it can also create new layouts

according to the scene graph (notice the different locations

and rotations of the bed and nightstand).

6. Conclusion

In this paper, we have introduced a novel, stochas-

tic scene layout synthesis algorithm conditioned on scene

graphs. Using scene graphs as input allows flexible and con-

trollable scene generation. Experiments demonstrate that

our model generates more accurate and diverse 3D scene

nightstand on

lamp

bed

left of

nightstand on

lampright of

bed right of

right of

dresser

nightstand

on

lamp

nightstand on

lamp

dresser

bed

left of

right of

right of right of

Figure 11: On the left most column are images of the class

‘bedroom’ from the SUN RGB-D dataset [27]. 3D bound-

ing boxes are calculated per object, and are fed to a rule-

based parser, which generates the relationships and creates

a scene graph. The scene graph is then fed to our 3D-SLN

to generate diverse layouts. Final images are rendered with

SPADE [22].

layouts compared with baselines. Our model can also be

integrated with a differentiable renderer to refine 3D layout

conditioned on a single example. Our model finds wide ap-

plications in downstream scene layout and image synthesis

tasks. We hope our work will inspire future work in condi-

tional scene generation.
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